
It forms a rotation matrix X on SO(3) by using three Euler angles
eul2rot(theta.12, theta.23, theta.13)
An Euler angle, a number which must lie in
An Euler angle, a number which must lie in
An Euler angle, a number which must lie in
A roation matrix.
Given three euler angles a rotation matrix X on SO(3) is formed using the transformation according to Green and Mardia (2006) which is defined above.
Green, P. J. \& Mardia, K. V. (2006). Bayesian alignment using hierarchical models, with applications in proteins bioinformatics. Biometrika, 93(2):235--254.
# NOT RUN {
# three euler angles
theta.12 <- sample( seq(-3, 3, 0.3), 1 )
theta.23 <- sample( seq(-3, 3, 0.3), 1 )
theta.13 <- sample( seq(-1.4, 1.4, 0.3), 1 )
theta.12 ; theta.23 ; theta.13
X <- eul2rot(theta.12, theta.23, theta.13)
X # A rotation matrix
det(X)
e <- rot2eul(X)$v1
theta.12 <- e[3]
theta.23 <- e[2]
theta.13 <- e[1]
theta.12 ; theta.23 ; theta.13
# }
Run the code above in your browser using DataLab